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Heuristic Dynamic Programming Guidance for Circular Trajectories

with Impact Angle Constraints
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Abstract: This paper proposes a new optimal guidance law around circular trajectories to control impact angle
constraints in three-point guidance mode. The guidance law employs a presented heuristic dynamic programming (HDP)
algorithm to realize close loop and provide optimized weighting matrices. To obtain the accurate optimized matrices fast,
a multi-search mode particle swarm optimization (MMPSO) method is used. Moreover, the stationary target can be
attacked successfully under the presented guidance, and the less control effort and smoother trajectories are well
guaranteed. Additionally, the effectiveness and applicability of our proposed guidance scheme are explicitly verified

through simulation tests.
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1. INTRODUCTION

The solution of conventional dynamic programming
(DP) optimal guidance law is guaranteed by Bellman’s
optimality principle. However, the guidance law heavily
depends on choosing appropriate weighting matrices,
which can reduce the weighted quadratic sum of the
short period mode variables during the terminal flight.
Therefore, the guidance problem base on DP can be
seen as how to select the weighting matrices to fulfill
the attack of target.

To achieve the satisfying weighting matrices, many
optimization algorithms have been designed. Particle
swarm optimization (PSO) algorithm was firstly
proposed in [1, 2]. As this method can be implemented
easily and had perfect performance on many
optimization problems, many scholars used it to solve
different problems. For example, Ref. [3] employed it to
design adaptive particle filter for the estimation of state
of charge, Ref. [4] achieved snowpack permittivity
retrieval by this algorithm, and Ref [5] planned
underwater manipulator trajectory using it. Moreover,
many variants of PSO algorithm were presented, e.g.,
multi-objective PSO in [6, 7], Multi-search PSO in [8],
and group merging PSO in [9]. Although these methods
can realize the optimization of parameters by
introducing new particles during the process, the
update mode of particle velocity and position was
relatively single, so that theconvergence of particles
was slow. To improve the levels of search efficiency
and accuracy, MMPSO algorithm [10] was designed.
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The method had faster convergence and deeper
search depth than other PSO. Due to that, this
algorithm can satisfy the high requirements for time
and precision in guidance. Therefore, the presented
HDP guidance law will employ it to optimize the weight
matrices on three-point guidance mode which is more
realistic in the attack of fixed target.

To fulfill optimal guidance, many scholars designed
different laws based on time-to-go estimation. Ref. [11]
firstly predicted time-to-go and used it to design optimal
guidance law. After that, a guidance algorithm based
on dual control was proposed in [12] to achieve the
interception of target and the estimation of time-to-go,
but this guidance law was invalid when interceptor was
away from homing triangle. To address the linear
quadratic optimal control problem in guidance process,
Ref. [13] designed an energy cost weighting matrix and
made it as the function of time-to-go. However,
different ways had different accuracy levels, and the
guidance precision can be affected by the inaccurate
estimate. Aside from that, these laws did not consider
impact angle constraint which can guide aircraft to hit
target with desired angle and achieve maximum
damage effects. This is greatly essential in some
cases, e.g., the attack of aircraft carrier or tank. To
avoid the problems, Ref. [14] proposed an optimal
guidance law based on a parameterized solution. This
guidance law not only can realize the control of impact
angle, but also can avoid the prediction of time-to-go.
Ref. [15] presented such a guidance law based on
neural-network to resolve the problem of nonlinear
optimal terminal guidance with impact angle
constraints. Ref. [16] also designed an optimal
guidance using sliding mode control theory to achieve
the attack of maneuvering target with desired impact
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angle. Moreover, Ref. [17] designed such a guidance
law to fulfill the control of both impact time and angle,
and the need for time-to-go estimation was eliminated.
Ref. [18] addressed the nonlinear optimal guidance
problem with impact-time and impact-angle constraints
without estimating the time-to-go. On the other hand,
some guidance laws were designed based on
programming method. Ref. [19] researched a guidance
law using model predicted static programming (MPSP).
Given the programming method, Ref. [20] proposed a
law considering impact angle constraint towards air-to-
ground interceptors. Ref. [21] presented a law for air-
to-air interceptors in three-dimensional space. Ref. [22]
proposed a generalized MPSP and employed it to
design an impact angle constrained guidance for air-to-
surface interceptors. However, these laws based on
static programming can only realize the suboptimal
control of guidance system, as the required parameters
were optimized by static scheme. To resolve the
problem, the guidance based on heuristic dynamic
programming was designed in this paper to attack
stationary target and satisfy the impact angle
constraint.

With respect to the previously published optimal
guidance laws, the proposed guidance scheme
acquires several advantages: (1) the stationary target
can be effectively attacked, and the impact angle
constraint is simultaneously satisfied. (2) the faster
convergence and deeper search depth are well
guaranteed by using MMPSO, so that the optimized
weighting matrices with higher accuracy can be
obtained rapidly; (3) optimal control of guidance
system, reduced control effort, smoother trajectories,
no time-to-go, and high efficiency can be achieved.

This paper is structured as follows. The problem
formulation is presented in Section Il. The controller
design is proposed in Section lll. In Section IV the
MMPSO algorithm is devoted. Then comparison the
method with the other known PSO algorithms in
Section V part A, as well as applying the proposed
guidance law on tactical interceptor system to validate
the theoretical analysis in its part B. The conclusions
are offered in Section VI, funding support in Section
VII, and declaration of conflicting interests in Section
VIII.

2. PROBLEM FORMULATION

The planar interception model is obtained from [23].
Now considering total force on the system, the
nonlinear engagement kinematics equations are

expressed in the inertial Cartesian coordinate system
as follows

(0= cos(r 1)
%M (£)=7sin(r, (1)) (1)

where V, is the speed of interceptor and is a constant,
Y (t) is the path angle of interceptor, aM(t) is the total
acceleration and perpendicular to the velocity vector,
and x,, (t) ,yM(t) are the position coordinates in plane
x axis and y axis, respectively.

The linearizing equations of motion around a
nominal circular trajectory are received from [33]

Ar(t) =Av, (t)

Avy(t)=—Au(t)—KliAr(t) @)

where Arand Av are the deviations of the radius and

the radial velocity, respectively. K is the control gain
and Au is the deviation from the nominal acceleration.

Using state space represents Eq. (2), obtain
Ax(t)= F Ax(t)+G Aulz) 3)
where

Ax=[ Ar Av, 1, F =

r

(4)

0 1 ~
2 ;o G, = 0
-K, 0 " -1

Further discretize Eq. (3) with the sampling interval
At and receive

Ax(k+1)= F Ax(k)+G Au(k) (5)

where k represents the time index, and the discretized
matrices are  obtained by F = and

r
r

G =(fome’ﬁ' dr)G,. The linear quadratic objective

function is

N-1
‘min 3 (Ax/Q,Ax, +Auf R Au, )+ Ax[ O, Ax, ©)
0> PYN-1 =0

subject to Ax,  =FAx, +G Au,

where the weighting matrices satisfy Q,,---,0, =0 and

R,,--,R, >0, and the values of both the matrices are
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real-time gains with Ax, and Au, . The length of the

horizon Nis equalto N =7, /Az.

3. CONTROLLER DESIGN

Here the optimization problem is solved analytically
by discrete DP algorithm. Its proof was stated clearly in
[30], as Hamilton-Jacobi-Bellman equation and Shur
complement theorem were employed thus the proof
process was simpler than the original. Theorem about
optimal controller as following:

Theorem 1  (Optimal controller):  Suppose
Q0,20 and R, R, >0, and consider the

following convex optimization problem under affine
dynamic constraints with 7 and G, . For Eq. (6), the

optimal solution is affine in Ax and is explicitly given by
Au, =K Ax, (7)

where the control gain is given by

r 7 k+l k+1

(GPG+R)GPF (8)
with

P =0, +F'BF-F'B,G (G'B,G+R) G'PF (9)

k+1 k+17r r k4l

We know that P

» is computed by backward
recursion from P, = Q, , and the optimal solution of the

problem in Eq. (6) can be obtained via solving a series
of discrete Riccati equations.

Remark 1: the performance of this guidance
depends on the choose of weighting matrices Q, and
R, . Here K, is used to control the dynamic response

and precision of controller. Moreover, both the matrices
and the preceding optimal gain matrix K, can be

computed offline and tabulated in the flight computer.
4. MMPSO ALGORITHM
A. MMPSO Objective Function

The optimization objective function is set at Eq.
(10), which includes two parts: the minimum deviation

of radius and radial velocity at the end, as well as the
minimum control effort during the whole process.

J=AxT0 Ax, + g(Au:RIAuT) (10)

1=k

B. MMPSO Algorithm

As we say before, MMPSO primarily improves the
particle swarm searching mode, exactly three
searching modes are employed by each particle to
seek the local or global best solution, while they adjust
the modes timely according to the dynamic
environment. The concrete improvements, particle
swarm searching mode and its adjustment, are shown
as following.

1. searching mode

a. Roam mode. We call the particle carries out
the activities in roam mode at £ moment if the particle

fly to the individual historical best pbl.’; and take the

search activity around it. The update equations of
particle velocity and position as following:

(11)

fe+1
id

k+l k
v =c v +c, 1, pb,
X

- .X + vk+1

where i is the sequence number of particle p,,
i=12---N; k is the number of iteration
time,k=12,--,m; d is the dimension of solution
space, d=1,2,---,D; ¢, and c, are the learning factors,

v and r, are the two random number and obey

k

uniform distribution in [O,l]. vy is the d dimension

speed of particle p, after k iteration times, also xl.kd is

the d dimension position of particle p, after &
iteration times.

b. Search mode. The particle search activities not
only consider the pb! up to now but also the global

best gbj of the whole search space is taken into

account at £ moment. The update equations of particle
velocity and position for this case as following:

K+l Kk _k
Vu =W, vzd +erne (pb,d _xuz)"'cz 7 (gbd _‘xid)

(12)

where inertia weight coefficient w, needs to meet

O<w, <w <w_ ., both w —and w__ are the
min max

max

constants. There is w =w —(wmax - wmm)%(

simulation experiment, where & is the current optimal
times and K is the total optimal times.

c. Forage mode. The particles fly to gb; just around it
from different directions and do the search activities at
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k moment. Differently, just update the particle position,
the equation as following, yet particle velocity is not
changed.

X, = &b (13)
2. Searching Mode Adjustment

It is known that a bird transfers information to
another by birdsong thus the three tasks should be
finished in advance:

Decide the information sender. Assuming the
population size is M and the position of particle p, is

xl.kd at & moment. Ranking the whole particles in

accordance with their fitness values from the best to
the worst, and denote as r», at k moment, thus we

have 1=r, =M. When r, =1, particle p, locates the

best position at £ moment, similarly it locates the worst
position whenr, = M. Therefore, the smaller 7, the
easier particle is to be the sender.

Design the rule of receiving information. The
definition of the minimum strength for receiving

information, when particle p, locates on thexl.kd at
k moment. That is

r, -1
S 14
Szk M—l ( )

where 0<s, <1 and s, <s, i,j=12,--- M. We know

that the larger probability of particle p, receiving the

information the smaller s, .

Adjust the searching mode. Denote ¢, as the signal
intensity at & moment and it obeys the uniform
distribution in (O, 1]. The regulations as following:

i. particle p, searches food in roam mode if
@, <s, . Which means the particle does not receive the

information @, at k& moment;

ii. particle p, actvities as search mode if
%(pk <s, =@,. Which means the particle receives the

information ¢, at k& moment rather the information
implies no fruits found;

ii. particle p, searches in the space as foraging

mode if if 0<s,.ks§(pk. Which means the particle

receives the information ¢, at kK moment as well as the
information predicts found fruits.

After all, the information sender is decided and
updated timely primarily according to its fithess value,
and the search mode adjustment for every particle is
constantly changed by the received information
strength, also each one activities as its selected mode
to seek the global best solution in the whole solution
space. Consequently, comparing to other PSO
algorithm, MMPSO own better search efficiency and
accuracy.

5. SIMULATIONS

This section includes two parts. For one, to show
the performance of the MMPSO, this method is used to
compare with other four PSO algorithms by eight
professional test functions. On the other hand, the
proposed HDP guidance law is applied to intercept
station target.

A. Comparing MMPSO with other PSO Algorithms

The professional test functions consist of two
unimodal functions and six multimodal benchmark
functions, which are used to the comparison between
the MMPSO and other PSO algorithms. These
functions are divided into two groups: unimodal
problems and unrotated multimodal problems. Their
formulas are presented as following.

Group A: Unimodal
Problems

and Simple Multimodal

1. Sphere function

fl(x)=2xl_2 (15)

i=1

2. Rosenbrock’s function

fz(x)=2(1oo(x§ —x,.+l)2+(x,_-1)2) (16)

Group B: Unrotated and Multimodal Problems

3. Ackley’s function

£i(x) =—206xp(—0.2 /%’E[)le]_

exp(% COS(Z’”;)J*' 20+e

i

(17)

[\

4. Griewank’s function

(%)n (18)

2 L

D X D
/ (x) = 2 4060 - l;lcos

i=1
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5. Weierstrass function

f. (x) = _i(kmg [ak cos(Zer" (x,. + 05))]) - DkE [a" cos(Zﬂ:b" . 0.5)] (19)

i=0 \ k=0 k=0

a=05 b=3 k=20

6. Rastrigin’s function
fi(x)= i(xf ~10cos(27x, ) +10) (20)
i=1

7. Noncontinuous Rastrigin’s function

£,(%)=3 (7 -10c0s (27, )+ 10)

i=1

X x| <3 (21)
= round(2xl_) . for i=1,2,---,D
2

8. Schwefel’s function

D 1
fi(x)=418.9829x D- Y x, sm(|x,. 2) (22)
i=1
The engagement parameters for testing the
performance simulation are: x"is the global optimal
and its corresponding fitness value is f(x) , as well as

the search range of each function is [ X, X,

min’~ " max

] These
arguments are given in Table 1.

Experiments are conducted to compare five PSO
algorithms, including PSO, UPSO, FDRPSO, CLPSO
and MMPSO algorithms. The population size is set at
30, the iteration number is set at 3000 and Monte Carlo
(MC) simulation time is set at 30. The curves of their

median convergence characteristics are presented in
Figure 1.

We know from Figure 1 that, the proposed MMPSO
has faster convergence and deeper search depth in
most cases, i.e., optimized value with higher accuracy
can be obtained in short time through this optimization
method. This conclusion can also be gained by the
simulation data shown in Table 2.

B. Interceptor again Target Simulation

Here we consider a nonlinear tactical interceptor
system against a fixed target. It requires that the
interceptor attacks the target with small impact angle
and velocity error, and control effort must be the
minimum. It is assumed that the impact angle could be
estimated within sufficient accuracy via the inertial
measurements.

B.1. Design Weighting Factor Matrices

As we know from the fore mentioned that the state
and control weighting matrices

Qi=diag[ q,; 4 ]),i=l,2,~--,N and R/_=I”/.[,

j=12,---,N-1, respectively, have an important impact

on the guidance law. Now we design the following time-
varying parameters for the two weighting matrices

= -i)/ - -i)/N .
{qli =4q,y€ 1D N’qzi =q,5€ 1o V’l =12, N (23)

ro=ry . j=12.N=1

The exponentially growing terms in O, and R, are
designed to achieve small Ar and Av, , the peak

values at k=Nare chosen to provide balanced
performance on the terminal constraint satisfaction.

Table 1: Global Optimum search Ranges and Initialization Ranges of the Test Function

Test function Expected optimal value Expected optimal function value Search range
1, [0,0,---,0] 0 [-100,100]"
I [LL-1] 0 [2.048,2.048]"
A [0.0.-,0] 0 [-32.768,52.768]
f, [0.0,:--,0] 0 [-600,600]"
£, [0.0.-,0] 0 [-05,05]
f, [0,0,,0] 0 [-5.12.5.12)°
1 [0.0.,0] 0 [-5.125.12]
A [420.96,420.96.--,420.96] 0 [-500,500]°
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Figure 1: The median convergence characteristics of 10-D test functions. (a) Sphere function. (b) Rosenbrock’s function. (c)
Ackley’s function. (d) Griewank’s function. (e) Weierstrass function. (f) Rastrigin’s function. (g) Noncontinuous Rastrigin’s

function. (h) Schwefel’s function.
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Table 2: Comparison Test Function Result for PSO Algorithms

Test Algorithm Average Average Test Algorithm Average é:’ e;aagee
function 9 Coverage value Coverage value function 9 Coverage value vvaltrleg
PSO 0.0192 2931 PSO 0.0021 2773
UPSO 6.2442e-61 2997 UPSO 0.6221 2998
fi FDRPSO 5.1344e-152 2998 f FDRPSO 0.0023 2994
CLPSO 1.4913e-31 2999 CLPSO 1.5472 2986
MMPSO 3.1507e-144 2986 MMPSO 2.3526e-07 2537
PSO 0.0766 2943 PSO 0.1689 2917
UPSO 3.5527e-15 1587 UPSO 0 1517
fa FDRPSO 3.5527e-15 1587 fa FDRPSO 0.0246 1680
CLPSO 3.5527e-15 2985 CLPSO 1.1707e-06 2999
MMPSO 0 1202 MMPSO 0 491
PSO 0.3652 2786 PSO 2.0946 2904
UPSO 0 1673 UPSO 4.8619e-12 2992
fs FDRPSO 0 1432 fo FDRPSO 0 1551
CLPSO 0 2589 CLPSO 0 2935
MMPSO 0 2486 MMPSO 0 794
PSO 3.1072 2849 PSO 0.1301 2922
UPSO 0 2423 UPSO 0 1544
f, FDRPSO 0 1591 fy FDRPSO 236.8767 924
CLPSO 0 2988 CLPSO 0 2211
MMPSO 0 772 MMPSO 1.7846e-08 2272
Remark 2: the experiment codes for PSO, UPSO, FDRPSO and CLPSO methods are available from http://www.ntu.edu.sg/home/epnsugan.
The nonlinear kinematics mode in the inertial 8535x105
Cartesian frame is used here. The parameters are as '
follows: the range from launch point to the stationary
target is 5000m, the speed of the interceptor is 200m/s, a3 1
the desired launch angle and desired impact angle &
. . . 8.525+ =
are equal to 75deg. The heading error (HE) is defined 8
as the difference between the desired and real launch 2
angle, and it equals to 5deg, the acceleration of the f_é B.52 1
. . 2 P b
interceptor is bounded to 10g (322 m/s* ). Similarly, the i
parameters of MMPSO algorithm for achieving optimal e 7
weighting matrices are as follows: the population size is
set at 30, the iteration number is set at 30, the MC is 851} g
set at 30, the maximum and minimum of inertia weight
coefficient w are respectively set at 0.9 and 0.4, the o ‘ , , ‘ ,
T 5 10 15 20 25 30

dimension of space is set at 3, the range of particle
velocity is VE[-Z,Z]. Assuming that the optimal
components of O and Rin the extremely enormous
range, i.e.,q, .4,y v E[0.0l,le+05], the two learning
factors are ¢, and c,, and both of them are equal to 2.

The curve about the minimum fitness value is shown in
Figure 2.

Figure 2: Curve about minimum fitness value.

Itemation number

We can obtain the optimal weight values for ¢, ,
q,yand r,  from Figure 2, e.g., 207.0807, 5886.8778

and 6996.2208,

respectively. It

dramatically declined
iteration number is about three and the fitness value

tendency occurs when

reveals

that the
the
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Figure 3: Interceptor trajectory and acceleration simulation for expected impact angle and HE are equal to 75deg and 5deg. (a)

Interceptor trajectory simulation. (b) Acceleration simulation.

tends to converge when the iteration number is about
five, i.e., the MMPSO method has the fast converge
property. These weight values are used to the
proposed HDP guidance and realize the simulations
about interceptor trajectory and acceleration with
expected impact angle and HE, which are shown in
Figure 3.

Figure 3a demonstrates that the target can be
intercepted successfully when the optimal weight
matrices are applied into the proposed guidance law.
This means that the obtained weight values are
effective and can make the terminal states to reach the
expected states, i.e., the expected radius and radial
velocity are achieved. On the other hand, we see from
Figure 3b that the control effort is smaller when
interceptor is closer to the terminal. This is
correspondent to the theory.

Remark 3: the above simulations are an example of
applying MMPSO algorithm to obtain the weighting
matrices for HDP guidance law. The received weighting
matrices values are used to the following sections.

B.2. Effect of Heading Errors

Here we present the nominal trajectories of
interceptor from launch point to the target, the two
points are denoted by two large dots in Figure 4, and

the different desired impact angles &, range from -
150deg to 150deg. The two weighting matrices O, and
R, are arbitrarily chosen in the range of mentioned

before, and we chose ¢,,.q,,.7,, are equal to 0.01. As

there is no HE existed, the corresponding guidance
accelerations are  constant and equal to

a, =V, /R=2(V;/D]sin(g,, ) in this case. The curves

of nominal trajectories and acceleration for different
desired impact angles are shown in Figures 4 and 5.

8000

8000

4000

2000

Y(m)
[=]

-2000 -

-4000

-6000

-8000 -

-5000 0 5000 10000

Xm)

Figure 4: Nominal trajectories for different
angles.

desired impact

20

| 75 o
15 112.5
7.50 = =150¢
10 25 “des. 1500
E
5 0
:
®
& 5- -
<
-180=
a0 -37.5¢ 7
-15 I— ) -112.5°
20 1 | 1 1 1 1
0 20 40 60 80 100 120 140
Time(sec)

Figure 5: Nominal acceleration for different desired impact
angles.

The trajectories and accelerations of interceptor
with different HE and the specific expected impact
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Table 3: Weight Matrices of Different HE for &, are Equal to 0deg and 30deg

weight matrix value (x10*) weight matrix value (x10*)

&, (deg) HE(deg) iy Gy s &, (deg) HE(deg) iy Gy Tya
150 0.1786 1.5600 8.7842 120 0.0577 0.6824 7.0015

112.5 1.4289 1.9327 9.3636 90 0.5535 0.8663 10
75 41119 10 9.0972 60 1.7520 9.9999 9.9999

37.5 6.2007 10 10 30 2.8246 3.4582 10

0 0 0.7574 5.0979 10 30 0 1E-06 1E-06 10

-37.5 6.2645 8.7630 10 -30 5.8224 5.9333 10
-75 3.4159 8.1106 7.5227 -60 7.0129 4.1765 9.7134

-112.5 0.5441 0.2442 3.7539 -90 5.9364 1E-06 10

-150 0.0952 0.01 10 -120 2.4801 10 10

&, - Desired Impact Angle; HE: Heading Error.

angles (0Odeg and 30deg) are shown in Figures 6-9.
The expected initial launch angles are equal to the
expected impact angles in the following sections. As
there are different HE angles, different weighting
matrices values are needed. The optimal weighting
matrices achieved by MMPSO are displayed in Table
3.

2000 | HE=150° i

1500+

1000 |

500

[1]3

Y(m)

-500+

-1000

-1500 -

-2000 R
-150°

L 1 1
2000 3000 4000
Xm)

1 I Il
-1000 0 1000 5000

Figure 6: Trajectories with desired impact angle Odeg and
different heading errors.

Figures 6 and 8 show that interceptor can hit the
target with different expected impact angles under
different HE angles. Even though the HE is large, such
as 150 deg with impact angle 0 deg and £120deg with
impact angle 30deg, the aircraft guided by the
proposed law can also fulfill the interception. This
means that the presented guidance law with the
optimized weighting matrices is effective. Furthermore,
we can get from their acceleration curves displayed in

Figures 7 and 9 that the large guidance accelerations
are needed in these cases to realize the attack at the
initial phase when there are HE angles in the system.
However, the required accelerations can be decreasing
over time, and can gradually close to 0. It means that
the trajectories can close to the optimal with minimum
control effort under the diverse HE angles during the
process. Considering that the changes of trajectory and
acceleration with both the expected impact angles is
basically identical, only the situation that impact angle
equals to 30deg is discussed in the following sections.

50 T T T T T

40

30

-150°

=
o

HE=150°

Acceleration(m/s2)
o

%)
S

&
=]

-40

_50 | I 1 1 1 | | | I
0 5 10 15 20 25 30 35 40 45 50

Time(sec)

Figure 7: Acceleration with desired impact angle Odeg and
different heading errors.

B.3. Analysis of Interceptor Velocity Direction

As y is the sum of the expected launch angle and
HE angle, this angle can be used to analyze the effect
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caused by HE angles, and can describe the change of
velocity with interceptor in Cartesian coordinates. The
curves for y angle under different HE angles are

shown in Figure 10.

2500 | HE=120° |
2000 1
1500 |
1000 -

= 500t

-500

-1000 - q

-120°

-1500 - | | ‘ | 1

0 1000 2000 3000 4000 5000
X(m)

Figure 8: Trajectories with desired impact angle 30deg and
different heading errors.

HE=120°

Acceleration(m/s2)

L 1 I

Il Il
5 10 15 20 25 30 35 40 45
Time(sec)

Figure 9: Acceleration with desired impact angle 30deg and
different heading errors.

We see from Figure 10 that these curves can
converge to the expected impact angle, i.e., 30deg,
even though their initial angles are diverse. The change
totally agrees with the theoretical analysis. Moreover, it
also reflects the validity of the proposed guidance law.

B.4. Analysis of the State Variable and the
Deviation of Impact Angle

Ar is the deviation between the real trajectory and
its nominal. Similarly, Av and A& represent deviation

with radial velocity and impact angle, respectively. Here

the changes of these three important error variables
under the impact of different HE angles are provided
and presented in Figures 11-13.

200 T T T T T

150 & k
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100+ \o0° B

60°
50 B

y(deg)

-50 /é .

_100 L 1 4 1 1 t 1 1
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Figure 10: Interceptor velocity direction change with the
expected impact angle 30deg.
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Figure 11: The change of the radius deviation for the expect
impact angle 30deg.

We see from Figure 11 that the change of Ar is
different from Av_and A& . Especially, Ar is equal to

zero under different HE angles at the initial moment, as
the interceptor is located in the launch point at that
moment, and their real radiuses are equal to the
nominal ones. However, the values of Ar are
increasing over time and reaching their peak ones, and
then tend to zero gradually. This means that this type
of error can be reduced at terminal phase. Aside from

that, it shows from Figures 12 and 13 that both the Av,
and A5 have the identical tendency. Exactly, their
values become large at the initial phase due to the HE,
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Figure 12: The change of the radial velocity deviation for the
expect impact angle 30deg.
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Figure 13: The change of the impact angle deviation for the
expect impact angle 30deg.

i.e., the maximum values of Av and AZ respectively

reaches to 200m/s and 1deg when HE equals to
120deg, but the error values can swiftly decline and

nominal ones. It indicates that both types of the errors
can also be diminished under the presented guidance
law.

B.5. Influence of the Interceptor Dynamics

The comparison of the trajectory and corresponding
acceleration between having and without autopilot lag
is presented in this section. The autopilot is modeled as
first-order dynamics and its transfer function is

areal = 1 (24)
a T s+1

com A4
where a , is the real acceleration for interceptor and

a, is the command acceleration. The engagement

parameters for the situation as follows: the autopilot lag

T, is set at 1(in seconds), the three desired impact

angles are set at 5deg, 40deg and 75deg, and HE is
set at 5deg. The weighting matrices for without and
having lag are listed in Table 4. The comparison curves
of trajectory and acceleration for these angles are
shown in Figures 14 and 15.

Figures 14 and 15 demonstrate that the trajectory
and acceleration curves for lag system approximately
coincide with the without ones, especially for at the
terminal phase. This means that the proposed
guidance law can also be useful for analyzing the lag
ones, although there is the minute difference at the
initial and middle phases.

B.6. Comparison Between HDP and BPNG

To illustrate the performance of the proposed
guidance law, the comparison between this guidance
law and BPNG [24] is made in this section. The
parameters are as follows: the weighting matrices for

HDP are given in Table 5, the BPNG gain N and

Ny are respectively set to 3 and 1, the desired

impact angles are in the interval of 5 to 55 deg, and the
heading error is equal to 5 deg (for impact angles that
are larger than 55deg, the BPNG guidance law

BPNG

close to zero when trajectories converge to their diverges and fails to intercept the target). The
Table 4: Weight Matrices for &, are Equal to 5 deg, 25 deg and 75 deg and HE is 5 deg
without lag weight matrix value( x10*) with lag weight matrix value (x10*)
HE(deg) Ed«.\ (deg) q\y L5%% Tva q\y L0%% Tya
5 1.7251 10 8.9351 1.4080 4.4086 8.9241
5 40 7.4844 7.7793 9.7533 1.9484 10 10
75 6.26543 10 10 2.1963 10 10

&, - Desired Impact Angle; HE: Heading Error.
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simulation results of trajectory, acceleration and control 2000 — T p—rr=
effort are shown from Figures 16-18, and the control 1800}
effort values with BPNG and HDP under three HE samk
angles are shown in Table 6.
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500 Figure 16: Trajectory comparison between HDP and BPNG.
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4 Figure 17: Acceleration comparison between HDP and
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Figure 15: Comparison the acceleration for with/without 6000} i |
autopilot lag.
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Table 5: Weight Matrices for&, are Equal to 5 deg, 30 £
i %
deg and 55 deg, and HE is 5 deg 5 3000] |
8
without lag weight matrix value( x10*) 2000} 4
HE(deg) &, (deg) iy Doy Txa
1000+ i
. | = -HDP
5 1.7251 10 8.9351 y . . . EI S
5 30 8.836 8.7099 8.7800 0 s 10 15 20 25 30 35
Time(sec)
55 0.81386 10 2.6584 . .
Figure 18: Control effort comparison between HDP and
&, - Desired Impact Angle; HE: Heading Error. BPNG.

From Figure 16, we see that the two guidance laws desired impact angle is large, i.e., 55deg. However, the
can fulfill the interception extremely even when the  trajectories of BPNG are more curved than those of
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HDP. It indicates that BPNG needs more guidance
acceleration compared with the HDP, although both of
them are valid. This can be verified by Figure 17. It
shows from this figure that the required guidance
accelerations with the proposed HDP are smaller than
those of BPNG under three desired impact angle,
especially for the large desired impact angle, i.e.,
55deg, at the terminal phase. This means that less
energy is required by the HDP when intercepting the
stationary target. Furthermore, we can obtain the
identical conclusion from Figure 18. It displays that the
control effort values with both the laws are basically
identical when the impact angles are small, but the
larger control effort is needed by BPNG compared with
the HDP when the impact angles are large. This can
also be acquired by Table 6. It is shown that the values
of control effort with BPNG and HDP are basically
equal when HE angles equals to 5deg and 30deg.
However, the value with HDP is evidently smaller than
BPNG when HE is equal to 55deg, i.e., 8.7398e+6 and
9.9502e+6, respectively.

6. CONCLUSION

This paper presents a new guidance law for circular
trajectories. The law is the combination of the MMPSO
and HDP algorithm. To fast obtain the two optimized
weighting matrices with higher accuracy, MMPSO is
used since it has faster convergence and deeper
search depth compared with other PSO. On the other
hand, to fulfill the optimal control of the guidance
system, the HDP method is proposed. Moreover, the
weighting matrices acquired from MMPSO are used to
design the guidance law based on HDP, so that the
fixed target can be attacked successfully, and the
desired impact angle can well be satisfied. Besides, the
presented law has the following advantages: reduced
control effort, smoother trajectories, and high efficiency.
These advantages can be validated through
simulations.

Table 6: The Comparison of Control Effort between
BPNG and HDP under Three HE Angles

HE(deg) BPNG (m’/s?) HDP (m%s?)
5 2.5796e+5 2.6456e+5
30 2.9825e+6 3.0186e+6
55 9.9502e+6 8.7398e+6
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