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Abstract: The autonomous flight capability of Unmanned Aerial Vehicles (UAVs) in complex dynamic environments
highly depends on the accurate perception of the environment and their own state by onboard sensors. However, limited
by sensor noise, model mismatch, observation heterogeneity, and external environmental disturbances, the output of
onboard sensors inherently possesses significant uncertainty and randomness. How to transform imperfect, multi-
source, and asynchronous sensor observations into reliable state estimation and environmental cognition results through
statistical modeling and inference methods has become one of the core issues in UAV perception system research. This
paper systematically reviews the development of research related to UAV onboard sensors from a statistical perspective,
focusing on the application and evolution of statistical modeling, state estimation, and multi-sensor fusion methods in
UAV perception systems. First, it summarizes the typical statistical observation models and noise characteristics of
inertial sensors, satellite navigation, vision, lidar, and novel neuromorphic sensors, and analyzes key statistical issues
such as random walk, non-Gaussian noise, and time-dependent errors. Subsequently, based on the Bayesian state
estimation framework, this paper systematically reviews the application progress of Kalman filtering, error state filtering,
particle filtering, and robust statistical methods in UAV navigation and localization, and compares and analyzes the
statistical nature of loosely coupled and tightly coupled multi-sensor fusion strategies. Building upon this, it further
discusses joint probabilistic modeling methods for heterogeneous sensors such as vision, inertial, and radar, as well as
the fusion trend of statistical learning and deep models in high-dimensional perception tasks. Finally, this paper
summarizes the role and limitations of statistical methods in UAV airborne sensor research and looks forward to future
development directions oriented towards uncertainty perception (the capability to explicitly quantify the reliability of
perception results), risk-constrained decision-making (strategies that incorporate estimation variance into control loops to
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ensure operational safety), and integrated sensing-computing architectures.
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1. INTRODUCTION

1.1. Research Background and Problem Definition

The widespread application of unmanned aerial
vehicles (UAVs) in environmental monitoring, urban
inspection, disaster response, and autonomous
transportation is driving their transition from remote-
controlled flight to fully autonomous intelligent
operation. This trend places increasingly higher
demands on autonomous perception. Furthermore,
efficient statistical algorithms directly contribute to
sustainable  flight  technologies by  reducing
computational power consumption, thereby extending
battery life and mission duration for green UAV
operations [1, 2]. However, due to the strict size, weight,
and power consumption (SWaP) constraints of micro-
UAVs, onboard sensors often employ low-cost
microelectromechanical systems (MEMS) devices or
consumer-grade optical lenses. Compared with high-
precision professional surveying equipment or large
aircraft avionics systems, these lightweight sensors
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have inherent deficiencies in measurement accuracy,
stability, and anti-interference capabilities, resulting in
significant systematic errors and random noise in the
raw observation data.

Furthermore, the working conditions faced by UAVs
during flight are far more severe than those faced by
ground robots or fixed monitoring stations. This
stringency is not only reflected in the motion ambiguity
and strong vibration interference caused by high
dynamic maneuvering, but also in the unpredictability
of the external unstructured environment [3, 4]. For
example, multipath effects in urban canyons can
severely distort GNSS signals, weak textures or drastic
changes in lighting indoors can lead to failure of visual
feature tracking, and airflow disturbances during flight
can introduce nonlinear dynamic noise [5, 6]. The
coupling effect of these internal and external factors
makes airborne sensor data inevitably exhibit
significant uncertainty, time-varying and random
characteristics. In essence, airborne sensors do not
directly provide precise physical quantities, but rather
random observations of the real state. Sensor noise,
system bias, time drift, multipath effects and
environmental disturbances make UAV perception
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problems inherently statistical [7, 8]. For example, zero
bias drift in the inertial measurement unit can be
modeled as a random walk process [9], outliers and
non-Gaussian noise are common in visual and lidar
observations [10], and time asynchrony and spatial
calibration errors between multi-sensor systems further
exacerbate the uncertainty of state estimation [11].
Therefore, the core issue in the research of UAV
airborne sensors has gradually evolved from simply
improving hardware accuracy to: how to recover
reliable state and environmental information from
imperfect sensor observations through statistical
modeling and inference methods [12, 13].

1.2. The Core Role of Statistical Methods

Statistical methods provide a systematic modeling
and inference framework for UAV perception systems,
enabling uncertainty to be explicitly described,
propagated, and utilized [14, 15]. In navigation and
positioning tasks, Kalman filtering and its extended
forms, by introducing probabilistic models, achieve
optimal fusion of inertial, satellite navigation, and
auxiliary sensor data [16, 17]. In visual and lidar
perception, statistical methods based on least squares
and robust estimation have become the theoretical
basis for the problem of simultaneous localization and
mapping (SLAM) [18, 19]. In multi-sensor systems in
complex environments, Bayesian inference provides a
unified perspective for joint modeling of heterogeneous
observations. As the application scenarios of UAVs
continue to expand, traditional statistical methods
based on Gaussian assumptions and linear
approximations have gradually revealed their
limitations. On the one hand, actual sensor noise often
exhibits non-Gaussian, heavy-tailed, or time-dependent
characteristics, leading to a decline in the performance
of classical filtering methods in complex environments
[20]. On the other hand, the high-dimensional data
generated by multimodal perception systems causes
the state space to expand rapidly, increasing the
complexity of modeling and inference [21]. To address
these challenges, robust statistical methods, particle
filtering, stochastic optimization, and statistical learning
methods have been gradually introduced into UAV
perception research, driving the transformation of
UAVs from "deterministic control" to "uncertainty
perception and decision-making."

The success of deep learning in UAV visual
perception in recent years has not diminished the
importance of statistical methods. On the contrary,
increasing research shows that deep models can

essentially be regarded as approximators of complex
probability distributions, and their reliable application in
UAV systems still relies on uncertainty modeling,
confidence assessment, and statistical inference
mechanisms [22-24]. Therefore, re-examining UAV
airborne sensor research from a statistical perspective
is of great significance for understanding the
applicability boundaries of existing methods and
guiding future system design.

1.3. Existing Limitations and Contributions of This
Paper

Currently, most review studies on UAV airborne
sensors focus on specific sensor types or single
technical directions, such as inertial navigation systems,
visual SLAM, or lidar perception. Unlike traditional
reviews that predominantly focus on hardware
specifications or isolated algorithmic implementations
(e.g., specific Visual SLAM pipelines), this paper
distinguishes itself by establishing a unified statistical
framework. We systematically deconstruct UAV
perception into stochastic observation, probabilistic
inference, and uncertainty quantification, revealing the
intrinsic mathematical connections between seemingly
distinct technologies. Furthermore, some reviews focus
more on engineering implementation and pay
insufficient attention to the sources of uncertainty and
their propagation mechanisms within the system,
limiting their guiding significance for UAV perception
problems in complex environments.

To address these shortcomings, this paper provides
a systematic review of UAV airborne sensor research
from a statistical perspective, aiming to construct a
unified framework for understanding. The main
contributions of this paper include:

(1)  Summarizing the statistical characteristics and
error models of common airborne sensors from
the perspective of stochastic observation
modeling;

(2) Systematically reviewing commonly used
statistical inference methods and their evolution
in UAV navigation, localization, and mapping
within the Bayesian state estimation framework;

(3) Analyzing the statistical nature of multi-sensor
fusion strategies and discussing the role of
statistical learning methods in high-dimensional
perception tasks;
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(4) Prospecting future research directions for
uncertainty perception and risk-constrained
decision-making.

Through this review, this paper hopes to provide a
systematic perspective centered on statistical modeling
and inference for UAV airborne sensor research,
offering reference for researchers in related fields in
terms of method selection and system design.

1.4. Review Scope and Methodology

To ensure a comprehensive review, we utilized
databases such as IEEE Xplore, ScienceDirect, and
Web of Science. The search keywords included "UAV
state  estimation," ‘"sensor fusion,” ‘“statistical
inference," and "uncertainty quantification." We
prioritized literature from the last decade (2015-2025)
to capture recent advancements in probabilistic
perception and deep learning integration, while also
retaining foundational classical theories.

2. STATISTICAL OBSERVATION MODELING OF
AIRBORNE SENSORS

2.1. Unified Statistical Observation Framework

In UAV perception systems, different types of
airborne sensors (such as inertial, satellite navigation,
vision, and lidar) differ significantly in their physical
mechanisms and output formats. However, from a
statistical perspective, their observation process can be
uniformly described as random sampling of the
system's true state. Let the true state of the UAV at
discrete time k be x, The observed output z;, of the
airborne sensors can be uniformly expressed as:

Z, = h(xy) + vy

Where h(-) represents the observation function, and
vy is the observation noise term, used to characterize
uncertainties such as sensor error, environmental
disturbances, and modeling incompleteness. This
formula provides a unified modeling foundation for
subsequent state estimation and multi-sensor fusion.

In UAV scenarios, v, often does not satisfy the ideal
independent and identically distributed Gaussian
assumption. During actual flight, sensor noise often
exhibits temporal correlation, state correlation, and
obvious non-Gaussian characteristics. For example,
the zero bias of an inertial sensor drifts slowly over time,
resulting in a large number of outliers in visual
observations, while lidar generates strong random

scattering in rain, fog, or dust environments. Therefore,
reasonable statistical modeling of sensor observation
noise is one of the key issues in the design of UAV
perception systems.

2.2. Random Modeling of Inertial Sensors

The Inertial Measurement Unit (IMU) is the most
critical airborne sensor in a UAV, and its output directly
determines the short-term observability of the UAV's
attitude, speed, and position [25]. A typical IMU
consists of a three-axis accelerometer and a three-axis
gyroscope. Its measurement model is usually
expressed as:

ak=wk+b£+n£,ﬁk=ak+bz+nz

where w, and a, are the true angular velocity and
specific force, b{,b¢ represent the zero-bias terms of
the gyroscope and accelerometer, respectively, and
n{,n¢ are high-frequency random noise.

In statistical modeling, the zero-bias terms are
usually treated as low-frequency random processes
rather than fixed constants. Common modeling
methods include random walk models or first-order
Gaussian-Markov processes:

. 1
byy1 = by + wy orb(t) = —;b(t) + w(t)

where w,, represents the driving noise, and 7 is the
correlation time constant. This type of modeling can
characterize the statistical properties of inertial sensor
errors accumulating over time, and is an important
prerequisite for the design of subsequent state
estimation methods.

To quantify the statistical characteristics of inertial
sensor noise, Allan variance analysis is widely used in
the field of unmanned aerial vehicles (UAVs). Through
statistical analysis of long-term static data, key noise
parameters such as angle random walk and bias
instability can be separated, thus providing a basis for
modeling the process noise of filters.

2.3. Uncertainty Characteristics of Satellite
Navigation
Global Navigation Satellite Systems (GNSS)

provide absolute position information for UAVs. Their
observation model can typically be expressed as:

gnss __ gnss
Zy, = P + Vv
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where p, represents the UAV's position state, and

vI™ represents the measurement error. Compared to
inertial  sensors, GNSS observations  exhibit

significantly different statistical characteristics: their
errors do not accumulate over time but are significantly
affected by the environment.

In urban canyons, forests, or complex terrain
environments, multipath effects and signal blockage
can cause the GNSS error distribution to deviate from
the Gaussian assumption, exhibiting heavy-tailed
characteristics or even systematic biases. Furthermore,
the GNSS update frequency is typically low, making it
difficult to meet the navigation needs of UAVs alone
under highly dynamic maneuvering conditions. This
complementary nature of statistical characteristics is
the theoretical basis for the fusion of GNSS and inertial
sSensors.

2.4. Statistical Characteristics of Visual and LiDAR

Visual cameras and LiDAR provide high-
dimensional, dense, or semi-dense spatial information
for UAV environmental perception, but their
observation processes exhibit significant randomness
and uncertainty.

For visual sensors, observations are typically
performed as feature point or pixel-level measurements.
Their statistical model can be abstracted as:

zp"™ = m(xg, m) + vt
where () is the projection model, and m represents
environmental feature points. Visual observation errors
mainly originate from image noise, illumination
variations, occlusion, and feature matching errors,

resulting in a large number of outliers in the error
distribution. In practical applications, the simple
Gaussian assumption is insufficient to fully describe
these error characteristics.

LiDAR observations are typically performed as
distance or point cloud data. Their noise characteristics
are affected by the ranging principle, reflectivity, and
environmental conditions. In rainy, foggy, or dusty
environments, laser scattering introduces a large
number of random echo points, causing the point cloud
data to exhibit highly non-ideal statistical distribution
characteristics. These issues have led to the
widespread application of robust statistical methods in
lidar point cloud processing and SLAM.

2.5. Novel Sensors and Unconventional Modeling

In recent years, the emergence of novel airborne
sensors has further enriched the statistical modeling
problem of UAV perception systems. Neuromorphic
sensors, represented by event cameras, output not
continuously sampled signals, but asynchronous event
streams triggered by brightness changes. From a
statistical perspective, these sensors are modeled as
inhomogeneous Poisson processes, where the
probability of an event generation is proportional to the
log-intensity gradient. Furthermore, the accurate fusion
of these multi-modal sensors relies on precise
calibration. Spatiotemporal calibration is fundamentally
a statistical estimation problem, often solved by
maximizing the joint likelihood of sensor measurements
to recover extrinsic parameters and time offsets [26].

Compared to traditional frame sensors, event
cameras have significant advantages in high-speed
motion and extreme lighting conditions, but their data

Table 1: Statistical Comparison of Common UAV Sensors
Sensor Key Error Sources Statistical Noise Typical Modeling
Characteristics Approach
IMU Bias drift, thermal noise, Time-varying bias Brownian Motion for bias; First-order
vibration accumulation, Gaussian white noise Gauss-Markov process.
GNSS Multipath, signal blockage Non-Gaussian, heavy-tailed distributions, Student-t distribution or GMM to
time-correlated errors handle outliers.
Vision lllumination change, Data-dependent noise, Robust Cost Functions in
mismatching frequent outliers. optimization.
LiDAR Scattering, reflectivity Sparse outliers, Robust Kernels or Point-to-Plane
multimodal distribution probabilistic models.
Event Camera Threshold noise, refractory Asynchronous point Inhomogeneous Poisson Process
period process, temporal based on intensity changes.
sparsity
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sparsity and asynchronicity also pose new statistical
challenges to state estimation and fusion algorithms
[27]. The introduction of these sensors further
highlights the necessity of a wunified statistical
understanding of UAV airborne perception problems.
The specific statistical characteristics and
corresponding modeling methods for these sensors are
summarized as shown in Table 1.

2.6. Summary

This chapter systematically analyzes common UAV
airborne sensors from the perspective of statistical
observation modeling, emphasizing the differences in
noise characteristics, temporal correlation, and sources
of uncertainty among different sensors. Through a
unified statistical framework, it can be seen that
regardless of the evolution of sensor physical
mechanisms, the core issues always revolve around
random observations and uncertainty modeling. This
understanding lays the theoretical foundation for the
state estimation and multi-sensor fusion methods
based on statistical inference in the next chapter.

3. STATE ESTIMATION BASED ON STATISTICAL
INFERENCE

Statistical observation modeling of UAV onboard
sensors lays the foundation for the state estimation
problem. This chapter systematically reviews
commonly used state estimation methods in UAV
navigation and perception from a statistical inference

perspective, emphasizing their probabilistic
assumptions, mathematical forms, and applicable
boundaries.

3.1. Probabilistic Representation and Bayesian
Framework

Let the state vector of the UAV system be:
X, € R"

Its state evolution and observation process can be
represented as a stochastic state-space model.

State transition model:
X = f (X1 Up—1) + Wimq, Wiy ~ p(W)
Observation model:
zp = h(xg) + Vi, Vi ~ p(V)

The goal of UAV state estimation is to recursively
solve for the posterior probability distribution:

P(Xi | Z1:1)

3.2. Recursive Form of Bayesian Filtering
(1) Time Prediction:

PXi | Zy—1) = fP(Xk | Xpe—1) PKp—1 | Zge—1) AXpq

This integral characterizes the propagation of state
uncertainty and is the statistical essence of the
accumulation of inertial integral errors in UAVs.

(2) Measurement Update :

Pz | X)) DXk | Zg:k—1)
fp(zk I X)) DX | Zg:—1) dXge

P(Xi | Zy) =
Where p(z, | x;) is the likelihood function, directly
determined by the sensor statistical observation model.

3.3. Linear Gaussian Case and Kalman Filtering

Assumptions: f(+), h(:) are linear, w,, v, 4 are zero-
mean Gaussian noise

The state model can be written as:

X = FiXpeoq + Wi, Wiy ~ N(0,Qp—1)
Zk = Hka + Vk'Vk ~ N(O, Rk)

The posterior distribution remains Gaussian:
Pk | Zyx) = N Ry, Pr)
Prediction steps:

f(klk—l = FRy-1
Prje—1 = FiPe 1 Fp + Qs

Update steps:

Ky = Pye—1Hg (H Py HE + Ry ™!
R = Rype—1 + K (Ze = HgRpgpe—1)
P =(1- Kka)Pka—l

3.4. Nonlinear Systems and Extended Kalman Filter

UAV dynamics and sensor models are often highly
nonlinear, therefore EKF is linearized through a first-
order Taylor expansion:

of oh

Fie = 5 e Hie = o0 g

EKF essentially assumes:

P(Xp | 21) ® NV
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This approximation may introduce linearization
errors under the conditions of high maneuverability and
strong nonlinearity of UAVs, prompting the
development of more robust methods.

3.5. Error State Kalman Filtering

To avoid directly linearizing the complete state,
ESKF decomposes the state into:

Xk =)-(k @5Xk

Where: xk is the nominal state, and 0 xk is the
small error state.

The error state dynamics are approximated as a
linear system:

0x=Fdéx+Gn
The error covariance propagation is:

e = 7% — h(Xy)
63\(]( = Kkrk
X, < X, D 6%y,

The statistical advantage of ESKF is that
linearization always revolves around the zero-mean
error, significantly improving numerical stability.

In high-dynamic UAV maneuvers, standard EKF
operating on Euler angles may suffer from gimbal lock
singularities. ESKF, by operating on the tangent space
of the quaternion manifold (error state), avoids these
singularities and maintains numerical stability even
during aggressive flight maneuvers.

3.6. Non-Gaussian Case and Particle Filtering

When the noise distribution is significantly non-
Gaussian or the system is highly nonlinear, the
posterior distribution cannot be approximated by a
single  Gaussian distribution.  Particle filtering
approximates the posterior using the Monte Carlo
method:

N
POu 1 21a) = ) wi 8k, — x()

i=1
Weight update:

@ @ €]
w,” w2 p(zg | X

Resampling condition:

1
S
> (we

Neff =

PF It has theoretical advantages in complex
environment modeling, but its computational complexity
limits its application in lightweight drones.

While computationally intensive, recent advances in
GPU-accelerated parallel computing and efficient
resampling strategies have made real-time Particle
Filtering feasible for onboard UAV processors,
particularly for non-Gaussian tasks like terrain-relative
navigation.

3.7. Robust Estimation and Heavy-Tailed Noise
Modeling

Outliers are prevalent in visual and LiDAR
perception. Robust estimation minimizes the weighted

residuals:
min )" p(n)
X .
L

where r; is the observation residual, and p(-) is the
robust loss function.

Huster Loss:

1

=72 lr1<§
p(r) = 1
6(rl —55), |r|>6

The negative log-likelihood corresponding to the
Student-t distribution:

7,.2
p(r) =log <1+ 7)

This type of method significantly
robustness in SLAM and multi-sensor fusion.

improves

3.8. Summary

This chapter systematically reviewed the
development of UAV state estimation methods from a
statistical inference perspective, from Kalman filtering
under the linear Gaussian assumption to nonlinear,
non-Gaussian, and robust estimation methods suitable
for complex environments. It can be seen that the
essential differences between different algorithms stem
from their different assumptions about the form of state
distribution and the statistical characteristics of noise.
This understanding provides a theoretical foundation
for the discussion of multi-sensor statistical fusion
methods in the next chapter.
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4. MULTI-SENSOR STATISTICAL FUSION AND
JOINT PROBABILISTIC MODELING

In UAV systems, a single sensor often struggles to
simultaneously meet the requirements of accuracy,
robustness, and real-time performance in complex

environments. Multi-sensor fusion, by introducing
redundancy and complementary information,
significantly ~ improves  state  estimation and
environmental perception performance. From a

statistical perspective, the core issue of multi-sensor
fusion lies in how to construct a joint probabilistic model
among different observation sources and, based on
this, perform consistent state inference.

4.1. Probabilistic Modeling Perspective of Multi-
Sensor Fusion

Let the UAV system state be x;, and at time k, it
simultaneously receives observations from M sensors:
7 = {z,(cl), z,((z), e Z(M)}
In the most general case, the goal is to estimate the
posterior distribution:
POt | 2330 2y e 2000)
If we assume that in a given state... Under the
condition of x_k, if the observations of each sensor are

independent, the joint likelihood can be decomposed
as:

M
p(zi | X)) = HP(Z,((m) | x;)
m=1

The conditional independence assumption is the
theoretical basis of most engineering fusion algorithms,
but in practical UAV systems, this assumption often
only holds approximately.

In real-world UAV platforms, the conditional
independence assumption is often violated. for
instance, high-frequency mechanical vibrations from
rotors can simultaneously introduce correlated noise
across both the IMU and the camera (via rolling shutter
effects), requiring colored noise modeling or state
augmentation to address the correlation.

4.2. Statistical Interpretation of Fusion Levels

From a statistical modeling perspective, multi-
sensor fusion can be divided into different levels, each
corresponding to different probability assumptions.

4.2.1. Data-Level Fusion

Data-level fusion directly constructs a joint likelihood
function from the original observations:

£ = | [P 130

m=1

The corresponding Maximum A posteriori estimation
(MAP) problem is:

M
log p(X | Zy:k—1) + Z log p(Z,E’") | xk)]

m=1

X = arg max
Xk

This form is suitable for tightly coupled... Widely
used in GNSS/INS and VIO systems.

4.2.2. Feature-Level Fusion

In feature-level fusion, observations from different
sensors are first mapped to a shared feature space y;:

v = gm(z™)

Then a conditional model is constructed:

P(Vi | %)

This method is common in vision-LIiDAR fusion, for
example, using LIiDAR depth to constrain the visual
feature scale.

4.2.3. Decision-Level Fusion

Decision-level fusion assumes that each sensor has
independently provided a state estimate )2,((’”) and its
covariance P,Em). Under the Gaussian assumption, the
optimal linear fusion is:

M
-1
Pt = (™)
m=1
M
-1
m=1

This method is computationally simple, but it is
difficult to characterize the correlation between sensors.

4.3. Statistical Essence of Loosely Coupled and
Tightly Coupled Fusion

4.3.1. Loosely Coupled Fusion

The loosely coupled method treats the state
estimate output by a sensor (such as GNSS) as a
pseudo-observation:

pseudo __ ~GNSS
Z, = Xg
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and assumes its covariance with the

corresponding likelihood function being:

is RONSS |

seudo
P(Zp I %) = N (X, RENSS)

From a statistical perspective, the loosely coupled
method implicitly assumes that the high-level estimates
are conditionally independent and that information loss
is negligible.

4.3.2. Tightly Coupled Fusion

The tightly coupled method directly uses the original
observations to construct the joint likelihood. For
example, in tightly coupled GNSS/INS:

GNSS h(Xk) + Vi
its joint posterior is:
p(Xk [ ZIMU GNSS) < p(Z GNSS | Xk)p(xk | ZIMU

This method still provides effective constraints when
observations degrade (e.g., insufficient satellite count),
and has higher statistical efficiency.

4.4, Visual-Inertial Joint Probabilistic Modeling

Visual-inertial odometry achieves robust estimation
of scale and rapid motion by jointly modeling visual
observations and IMU pre-integration.

Let the visual feature observation residual be:

cam

cam
9%

=z — (X, m

The IMU pre-integration residual is:

imu

et =@ — alxg, x;)

4.5. Vision-LiDAR Joint Modeling

In vision-LiDAR fusion, the joint probability model
can be written as:

p (X m | 2§, 23 o< p(2™ | %, m)P (2™ | X4, m)P (%)

The corresponding optimization objective function
is:

min cham (” rlpam ”) + Z Plidar (" r]l_idar ”)
i j

Where p(-) is the robust loss function, used to
suppress outliers.

4.6. Information Filtering and Distributed Fusion

In multi-UAV or distributed sensing systems,
information in a more formalized form is more
advantageous. Define the information matrix:

A = Pty = PRy

Information fusion can be directly achieved through
summation:

M

_ Z A™ gy = Z (™

m=1

This form is particularly suitable for communication-
constrained or asynchronous update scenarios.

4.7. Statistical Fault Detection and Integrity

From a statistical perspective, sensor failure
detection is modeled as hypothesis testing. Methods
such as Chi-square tests on the normalized innovation
squared (NIS) or residual monitoring are used to detect
statistical anomalies, allowing the fusion filter to isolate
faulty sensors and maintain integrity. This mechanism
is critical for safety-critical UAV operations to prevent
catastrophic divergence due to sensor malfunctions.

4.8. Summary

This chapter systematically analyzed UAV multi-
sensor fusion methods from the perspective of joint
probabilistic modeling, revealing the essential
differences in statistical assumptions and information
utilization efficiency among different fusion strategies. It
can be seen that multi-sensor fusion is not a simple
data superposition, but a problem of consistent
modeling and inference of multi-source uncertainties.
This understanding lays the foundation for the
discussion of high-dimensional perception and
statistical learning methods in the next chapter.

5. STATISTICAL LEARNING AND APPLICATIONS
OF UNCERTAINTY PERCEPTION

With the increasing number of onboard sensors and
the growing dimensionality of perception in UAVs,
perception problems are gradually expanding from low-
dimensional state estimation to high-dimensional
environmental understanding and semantic modeling.
In this context, traditional statistical inference methods
relying on explicit probability models and linearization
assumptions  face  modeling  difficulties  and
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computational bottlenecks when dealing with complex
scenes and high-dimensional observations. Statistical
learning methods, especially the combination of deep
learning and Bayesian learning, provide a new
modeling paradigm for UAV perception systems.

It should be noted that statistical learning methods
are not a replacement for the classical statistical
inference framework, but rather an extension of it in
high-dimensional,  strongly = nonlinear  scenarios.
Understanding this is crucial for reasonably evaluating
its role in UAV systems.

5.1. Statistical Interpretation of Deep Learning

In UAV vision and multimodal perception tasks,
deep neural networks are commonly used for object
detection, semantic segmentation, and feature
extraction. From a statistical perspective, deep models
can be viewed as function approximators of complex
conditional probability distributions. For example, in
visual perception, neural networks can approximate the
mapping from observation z to latent variable y:

y = fo(2)

where the parameter \theta is learned through
maximum likelihood or empirical risk minimization.

In UAV scenarios, deep models are often
embedded in traditional statistical frameworks, such as
as part of observation models, feature extraction
modules, or data association mechanisms. This hybrid
paradigm of "statistical inference + learning model" has
become the mainstream design approach for current
UAV perception systems.

5.2. Uncertainty Perception and Probabilistic
Learning

In safety-critical UAV applications, relying solely on
point estimation outputs for perception results is
insufficient to meet system reliability requirements.
Uncertainty-aware perception has gradually become a
research focus, aiming to provide a reliability measure
for model predictions.

From a statistical learning perspective, uncertainty
can generally be divided into two categories:

Aleatoric Uncertainty: Caused by sensor noise and
environmental randomness;

Epistemic Uncertainty: Caused by model structure
and the finiteness of training data.

To characterize these uncertainties, researchers
have proposed various methods, including Bayesian
neural networks, Monte Carlo Dropout, and deep
model ensembles. These methods sample model
parameters or output distributions, enabling deep
models to output predictive distributions rather than
single estimates, thus providing statistically significant
risk information for subsequent state estimation, path
planning, and control.

In UAV perception systems, uncertainty estimation
has been used for tasks such as dynamic obstacle
avoidance, risk-constrained path planning, and sensor
degradation detection, demonstrating the practical
value of statistical learning methods at the engineering
level.

Practically, Monte Carlo (MC) Dropout approximates
the posterior distribution by performing multiple
stochastic forward passes during inference. Similarly,
Deep Ensembles train multiple independent networks
to capture epistemic uncertainty, providing a variance
estimate that is critical for fusing learning-based
outputs with traditional filters.

5.3. Optimization Perspective of High-Dimensional
Perception

In tasks such as visual SLAM, LIiDAR SLAM, and
semantic mapping, the state estimation problem is
often transformed into a large-scale nonlinear
optimization problem. From a statistical perspective,
this type of problem can be uniformly interpreted as a
maximum a posteriori (MAP) estimation problem:

X = arg max log p(z | x) + log p(x)
X

Where, the prior term p(x) reflects the motion model
and physical constraints, while the likelihood term
p(z | x) is given by the sensor observation model or
learning model. In this framework, deep learning
methods often play the role of likelihood modeling or
feature association, rather than independently
completing the entire inference process.

This unified understanding of learning methods from
a statistical optimization perspective helps avoid
simplifying UAV perception problems into purely data-
driven tasks and also provides theoretical support for
the interpretability and stability of algorithms.

5.4. Statistical
Sensors

Learning Challenges for Novel

The introduction of novel airborne sensors has
further expanded the application boundaries of
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statistical learning methods in UAVs. Neuromorphic
sensors, such as event cameras, output asynchronous
event streams instead of regularly sampled continuous
signals. This type of data is naturally suitable for
description using point process and probabilistic
graphical models, posing new challenges to statistical
learning methods.

In research on the fusion of event vision with
traditional vision or inertial sensors, learning models
are often used to estimate the event generation
process or assist in data association, while state
estimation and fusion still rely on probabilistic inference
frameworks. This design approach of "statistical model-
led, learning model-assisted" demonstrates strong
versatility in the application of novel sensors.

5.5. Limitations and Engineering Considerations

Although statistical learning methods show
significant advantages in perception accuracy and
expressive power, their application in UAV systems still
faces  several challenges, including model
generalization ability, training data dependence, and
computational resource consumption. Furthermore, the
statistical assumptions of deep models are often
implicit in the training process, lacking explicit physical
and probabilistic interpretations, which to some extent
limits their direct application in high-security scenarios.

Therefore, the current research trend is not to
completely replace traditional statistical inference with
statistical learning methods, but rather to explore the
complementarity and integration of the two, so as to
achieve a balance between performance, robustness,
and interpretability in UAV perception systems.

A critical statistical challenge is Out-of-Distribution
(OOD) detection. Deep models trained on clean data
often yield overconfident incorrect predictions when
facing unknown environmental disturbances (e.g.,
smoke or glare). Furthermore, the lack of adversarial
robustness poses security risks, necessitating rigorous
statistical verification.

5.6. Summary

This chapter provides a general overview of the
development of UAV airborne sensor perception
methods from the perspective of statistical learning and
uncertainty perception. It can be seen that statistical
learning methods mainly play a role in high-
dimensional modeling and complex mapping in UAV
perception systems, while the statistical inference

framework remains the core foundation for achieving
consistent estimation and risk control. The deep
integration of the two constitutes an important research
direction for current and future UAV perception
systems.

6. SUMMARY AND OUTLOOK

6.1. Summary

This paper systematically reviews the theoretical
foundations, methodological evolution, and
development trends of UAV airborne sensor research
from a statistical perspective. Unlike traditional reviews
that focus on sensor type or single algorithm, this paper
places the UAV perception problem within a unified
framework of stochastic observation and statistical
inference, providing a holistic analysis of airborne
sensor data modeling, uncertainty sources, and multi-
source fusion mechanisms.

By reviewing the statistical characteristics of inertial
sensors, satellite navigation, vision, lidar, and novel
neuromorphic sensors, it can be seen that the core
challenge facing UAV perception systems is not the
insufficient accuracy of a single sensor, but rather the
superposition and propagation of multiple uncertainties
across time, space, and modal dimensions. To address
this issue, this paper systematically reviews state
estimation methods based on Bayesian inference,
analyzing the applicability and limitations of Kalman
filtering, error state filtering, particle filtering, and robust
statistical methods under different assumptions.

Regarding multi-sensor fusion, this paper compares
loosely coupled and tightly coupled fusion strategies
from the perspective of joint probabilistic modeling,
pointing out that the essential difference in fusion
effects stems from different approaches to handling
observation correlation and information utilization
efficiency. Furthermore, as perception tasks expand to
higher dimensions and semantic levels, statistical
learning methods have gradually become an important
component of UAV perception systems. However, their
engineering applications still rely on statistical inference
frameworks to explicitly characterize and constrain
uncertainty.

Overall, the development history of UAV onboard
sensors shows that statistical modeling and inference
methods have always been the key link between
sensor hardware and autonomous decision-making
capabilities. Regardless of how perception modalities
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evolve, the core revolves around

uncertainty.

issue always

6.2. Future Research Directions

Although existing research has made significant
progress in UAV onboard sensor modeling and fusion,
several research directions still warrant in-depth
exploration in complex real-world environments.

First, uncertainty perception and risk-constrained
decision-making will become an important development
direction for UAV systems. Future research needs to
further explicitly introduce uncertainties in sensor and
state estimation into the path planning, control, and
task decision-making layers, enabling UAVs to make
risk-controlled autonomous decisions under imperfect
perception conditions.

Second, joint statistical modeling of high-
dimensional heterogeneous sensors still faces the
trade-off between modeling complexity and
computational feasibility. How to construct consistent
probabilistic models for multimodal, high-dimensional
observations while ensuring real-time performance is
one of the key factors restricting the further
development of UAV perception systems.

Third, the deep integration of statistical inference
methods and statistical learning models is expected to
achieve a better balance between performance and
interpretability. By introducing physical priors, structural
constraints, and probabilistic interpretations, learning
models can better serve UAV perception systems,
rather than existing as isolated black-box modules.

Fourth, Digital Twins and Simulation-based
Inference will play a pivotal role. High-fidelity
simulations allow for the generation of massive
datasets covering rare "long-tail" events, enabling the
training and validation of statistical models against
ground truth that is unobtainable in physical flight.

Finally, Edge Al and Lightweight Inference are
crucial. Future algorithms must balance statistical rigor
with SWaP (Size, Weight, and Power) constraints,
utilizing hardware-aware optimization (e.9.,
quantization, pruning) to run complex probabilistic
models on embedded UAV processors.

With the development of edge computing and
integrated sensing-computing architectures, lightweight,
online-updable statistical inference methods will
become an important research direction in UAV

onboard system design. These methods need to
achieve stable and reliable uncertainty modeling and
inference under limited computing power and power
consumption.

Research on UAV onboard sensors is not only a
competition of sensor hardware and algorithm
performance, but also a continuous deepening of the
understanding and handling capabilities of uncertainty.
A unified examination of different perception
technologies from a statistical perspective helps clarify
the applicable boundaries of existing methods and
provides a theoretical basis for the design of future
autonomous UAV perception systems. Integrating
statistical methods with novel sensors empowers safe
autonomy. Robust perception is the cornerstone of
Intelligent Aeronautical Systems, enabling collision
avoidance and future UAV Traffic Management (UTM)
integration.
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